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ABSTRACT: Applying thermophotovoltaics (TPV) to present energy production technologies allows us to increase 
energy output while utilizing existing infrastructure by reclaiming the heat lost during the production process. In order to 
maximize the efficiency of these sources, the conversion efficiency of the TPV system needs to be optimized. Using 
metamaterials, we have created selective emitters that tailor the incident light spectrum to the band gap of specific diodes, 
offering the potential to reduce diode heating and increase efficiency. Usage of metals such as platinum and molybdenum 
makes the emitters able to withstand the high temperatures required to create ideal spectra for III-V cells.  Simulations 
from CST Microwave Studio were used in the design process and testing of the emitters includes heat tests and SEM 
analysis. 
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1 INTRODUCTION 
 
 Due to recent advances in III-V semiconductor 
fabrication techniques, materials with narrow band gaps, 
such as InAs, can be used to make thermophotovoltaic 
(TPV) cells[1][2], [3], [4], [5], [6], [7][8] photovoltaic 
cells [9], [10] and photodetectors[11], [12], [13], [14], 
[15], [16], [17], [18], [19][20], [21], [22], [23][24], 
[25][26], [27][28], [29], [30] in the mid- to far-infrared 
frequency range.  Spectral control measures, such as 
filters and selective emitters, are often implemented[2] to 
prevent excess thermalization in the cell.  
 Over the past decade, nanostructures have been used 
to generate novel optical interactions.  These materials 
have since become known as metamaterials.  Recently, 
negative refractive indices have been realized[31] and 
have led to research advances in the development of 
invisibility cloaks[32], perfect lenses[33], and other 
custom materials.  In the past few years, the unique 
optical properties of metamaterials have been explored as 
a means for creating perfect absorbers and emitters of 
radiation.[34]  
 Through impedance matching and the minimization 
of light transmission, narrowband perfect absorbers have 
been created.[35]  According to Kirchoff’s laws, the 
emission spectrum of a body is the same as the 
absorption spectrum; therefore, a perfect absorber can 
also be used as a perfect emitter.  Such an emitter can be 
tailored to the band gap energy of a p-n junction as a way 
to more efficiently absorb light.  The selective emitter 
minimizes extraneous device heating by rejecting light 
whose energy is too low to generate carriers or is too high 
and would generate significant phonon production via 
thermalization.  This technology is of particular interest 
to the thermophotovoltaic (TPV) community.  
Application of a selective emitter to a TPV cell will 
increase the entire system efficiency, making TPV a more 
viable technology. 
 In order to maximize the power output, the selective 
emitter should be designed to operate at a temperature 
which aligns the peak of the blackbody spectrum at the 
wavelength of interest, as calculated by Planck’s law. 

2 BACKGROUND 
 

Selective emitters with a large spectral peak in the 
infrared range have been fabricated previously.[36]  
However, the metal used in metamaterials like this tend 
to be gold[36] or aluminum[37].  The low melting points 
of these metals (660°C for aluminum, 1050°C for gold) 
become a problem when designing emitters for currently 
available TPV cells.   To maximize the emitted power, a 
narrow band emitter should be heated to the temperature 
that places the maximum of the blackbody emission 
curve at the wavelength of interest, as seen in Figure 1. 
[38]   Using Wien’s displacement law (Eq. 1), we can 
calculate that temperature given a target peak 
wavelength,   

 
 λmaxT = b    Eq. 1 
 
where λmax is the peak wavelength, T is the blackbody 
temperature in Kelvin, and b is Wien’s displacement 
constant, which is equal to 2.898 x 10-3 m·K.  For 
example, an emitter for a GaSb TPV cell with a band gap 
of 0.7eV, corresponding to a 1.77μm wavelength, would 
need to be at 1400°C for optimal performance.  
Metamaterials made of either gold or aluminum would 
degrade past the point of operation long before the 
optimal temperature was reached.  

Figure 1.  Comparison of produced power and bandwidth 
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for a blackbody (dashed lines) at 500°C (red) and 300°C 
(blue) and the power output of their respective selective 
emitters (solid lines) targetting a 3.7μm wavelength. 
 To create selective thermal emitters that can be 
coupled with available TPV cells, we utilized platinum 
and molybdenum as the basis for metamaterials targeted 
at different wavelengths. These metals were selected for 
their relatively high melting points; about 1700°C and 
2600°C, respectively.   

 
 
3 SIMULATION  
 
3.1 Method 
 Wien’s displacement law was used to determine the 
peak wavelength of a blackbody at the temperatures of 
interest.  At 500°C, this corresponded to 3.75μm (80 
THz) and at 1000°C, the peak wavelength was at 2.28μm 
(131.7 THz).  Platinum was used as the metal for a 500°C 
optimized selective emitter.  From previous work[39], 
platinum nanostructures can degrade well below the 
melting point, so molybdenum was used as the metal for 
a 1000°C optimized selective emitter. 
 Simulations were performed using CST Microwave 
Studio, based on the models developed for previous 
work[39].  Materials characteristics such as conductivity 
and plasma frequency were based on Drude model 
calculations from Ordal et al.[40]   
 The designs were optimized based on several 
criteria.  Most importantly, the selective absorption peak 
had to appear within 100nm of the target wavelength.  
Selectivity is also an important characteristic of these 
emitters, so the full-width, half-maximum (FWHM) was 
minimized as much as possible with the goal of being 
less than 500nm.  Finally, the percentage of the 
impinging light that is absorbed at the target wavelength 
is directly proportional to the amount of light transmitted 
from the emitter when it is heated.  Therefore, it was very 
important to maximize the absorption percentage to also 
maximize the power emitted in the desired band.  
 The procedure for optimization began with rough 
alignment of the absorption peak through manipulation of 
the metamaterial pattern dimensions and the size of the 
unit cell.  The complexity of the pattern affected the 
FWHM of the peak with more complex designs resulting 

in a sharper peak.  Therefore, crosses were selected as the 
basis for the patterns rather than simple rectangles or 
circles.  More complex patterns were not feasible for the 
target wavelengths as the dimensions became smaller 
than the resolution of the electron beam lithography tool 
used in fabrication.  Finally, absorption percentage was 
found to be dependent on the thickness of the patterned 
metal layer, as can be seen by the peak wavelength drift 
in Figures 2 and 3.  By adjusting each of these aspects of 
the design, we were able to develop sharp, selective 
peaks with near unity absorption. 
 
3.2 Simulation Results 
 For the 500°C emitter, the metamaterial pattern 
consisted of a cross whose arms were 770nm by 150nm 
rectangles in a 1μm unit cell. This pattern was then 
repeated in a square lattice over the desired write-field.  
A top metal layer thickness of 150nm was found to 
provide the highest absorption rate, as shown by the 
simulation results in Figure 2.  For the 1000°C emitter, 
the pattern consisted of a cross with 450nm by 100nm 
arms on an 800nm unit cell.  Again, this pattern was 
repeated over the desired write-field.  The ideal top metal 
thickness for molybdenum was found to be 30nm.  Both 
designs were reproduced with the addition of a 10nm 
alumina capping layer. Simulated spectra for each design 
can be seen in Figures 2 and 3.  
 Several thicknesses were simulated for both 
platinum (Figure 2) and molybdenum (Figure 3).  Along 
with varied absorption, the changing layer thickness 
introduced a fair amount of peak shift.  Had those 
thicknesses been desirable, the pattern dimensions would 
have had to be adjusted to shift the peak back to the 
target wavelength. 
 
 
4 FABRICATION 
 
4.1 Method 
 Two-inch, single side polished sapphire wafers were 
used as the main substrate of the MM emitters.  A 100nm 
grounding plane of metal was deposited on the sapphire 
using electron beam evaporation with a 20nm layer of 
alumina deposited on top of that using atomic layer 
deposition (ALD).   
 
 

 
Figure 2. Simulation data for the 500°C emitter made 
from platinum with varying top layer thicknesses (see 
inset for side view of unit cell) of 50nm (green), 100nm 
(red), and 150nm (blue). 

 
Figure 3. Simulation data for the 1000°C emitter made 
from molybdenum with varying top layer thicknesses (see 
inset for side view of unit cell) of 50nm (green), 30nm 
(red), and 10nm (blue). 
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 After dicing into smaller chips, electron beam 
lithography was used to expose the pattern into PMMA 
C6 resist. The metamaterial metal was then deposited via 
PVD, followed by liftoff in acetone.  Samples with an 
additional capping layer of alumina were also fabricated 
to guard against oxidation and surface effects. 
 
4.2 Fabrication Results 
 The emitters were imaged via SEM to ensure close 
match with the simulations.  These images can be seen in 
Figures 4 and 5.  They show close match to the desired 
pattern dimension, with some differences due to the 
electron beam dosage used in the fabrication process.  
Further optimization of electron beam write procedures 
are expected to mitigate the difference between the 
designed pattern and fabricated pattern.   Absorption data 
via Fourier transform infrared spectroscopy will be 
forthcoming.  
 
 
5 CONCLUSION 

 
 Selective thermal emitters made of platinum and 
molybdenum were simulated and fabricated.  Time 
domain simulations using material properties from the 
Drude model was used to optimize the metamaterial 
pattern dimensions and layer thicknesses.  The 
optimization process included reducing the FWHM and 
increasing the percentage of light absorbed at the target 
wavelength.  By optimizing and tailoring the selective 
thermal emitter spectrum to a specific band gap, we can 
increase the efficiency of thermophotovoltaic cells. 
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